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ABSTRACT: The Midwest is a land-locked mid-latitude geographical setting where complex 19 
atmospheric processes take place in conjunction with local emissions and transported air pollutants. 20 
Periodically, upwind wildland and prescribed fire smoke is transported into the region and results in 21 
unhealthy concentrations of fine particulate matter (PM2.5) and at the surface. Comparisons of the 22 
meteorological conditions associated with typical high pollution days, versus those of fire smoke 23 
influenced days, are useful to forecasters and air quality planners. 24 

To better understand the meteorological setting and pollutant transport pathways bringing fire 25 
smoke into the region, LADCO applied a spatial classification technique called a Self-Organizing 26 
Map (SOM) to daily average PM2.5 concentrations using the 3-km resolution High Resolution Rapid 27 
Refresh (HRRRv4) reanalysis dataset for 2019-2023. The objective of the analysis is to identify the 28 
primary features of the physical and dynamical atmospheric conditions associated with air pollution 29 
episodes with and without the influence of smoke. 30 

We will present the results of our SOM analysis of pollution episodes caused by wildland fires 31 
originating in the southwestern US and southwestern Canada. We used the SOM to identify the 32 
synoptic scale meteorological conditions and the anticipated increases in PM2.5 during fire events. In 33 
addition, we investigated a key aspect of whether the long-range transported smoke aloft reached the 34 
surface. Vertical atmospheric characteristics such as wind shear, stability, and 24 changes in the 35 
geopotential height and temperature for fire-influence SOM nodes, highlight key upper-air features 36 
for vertical mixing and indicate whether air masses ascend or descend along the transport path 37 
between the fire smoke source and receptor monitors. 38 

Our study offers two practical applications for air quality forecasters. First, using SOM to identify 39 
the weather patterns associated with typical high-pollution days provides historical data for similar-40 
day analysis for exceptional event applications. Secondly, the identified synoptic weather patterns 41 
linked to fire smoke-influenced days provide insights into the expected increases in PM2.5 42 
concentrations due to fire smoke in the Midwest. 43 

 44 

1. INTRODUCTION 45 

Periodically, wildland fire smoke is transported into the Midwest and results in unhealthy 46 
concentrations of fine particulate matter with a diameter less than 2.5 micrometers (PM2.5). Elevated 47 
PM2.5 concentrations have been associated with a wide range of human health hazards and also 48 
affect many meteorological and chemical processes in the atmosphere. Moreover, the US Midwest’s 49 
central placement within the North American continent and the Great Lakes makess it a common 50 
place for a diverse range of meteorological and chemical process to occur and converge. The 51 
identification of common meteorological conditions associated with significantly above normal 52 
PM2.5 concentrations is applicable to both the fields of air quality and meteorology. 53 

In this study, we examine the above idea using a Self-Organizing Map (SOM). Self-Organizing Maps 54 
were originally proposed in (Kohonen 1982) and are a type of artificial neural network that aim to 55 
find lower dimensional relationships in high dimensionality data whilst preserving the original 56 
structure (topology) of its input data. Unlike its more traditional counterparts, such as principal 57 
component analysis, it makes no underlying assumptions about relationships within the input data, 58 
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such as linear relationships. SOMs have been applied within a wide variety of fields such as 59 
genomics (Törönen et al. 1999), astrophysics (Carrasco Kind and Brunner 2014), and economics 60 
(Deboeck and Kohonen 2013), and are commonly used tools in the fields of data mining (Vesanto 61 
and Alhoniemi 2000) and non-linear manifold learning and representation (Forest et al. 2021). More 62 
recently SOMs have been applied within the physical sciences as well and have been proven to be 63 
successful when applied to air quality and meteorology data (Hrust et al. 2009) (Hewitson and Crane 64 
2002). 65 

 66 

1.1 GOALS AND MOTIVATIONS 67 

This project is motivated by persistent PM2.5 episodes in the Great Lakes region and a need to 68 
further understand the nature of their origins and impacts. Additionally, given the importance of 69 
atmospheric aerosols on the earth’s global radiation budget, insights gleaned from understanding 70 
where the pollutants occur and what effect they have on the global environment is relevant within a 71 
changing climate. 72 

Leading to our overall research question: 73 

How can Self Organizing Maps (SOMs) be used to identify meso-scale meteorological 74 
conditions associated with high PM2.5 and fire smoke impacted conditions in the LADCO 75 
region? 76 

The goals laid out for this project are as follows: 77 

1. To enrich the conceptual model regarding high concentrations of PM2.5 in the Midwest by 78 
incorporating meteorological settings identified through the Self-Organizing Map (SOM) 79 
method. 80 

2. To establish a basis for determining whether the overhead smoke observed by satellites 81 
descended to the surface and impacted concentrations of PM2.5 at surface monitors. 82 

3. Compare the synoptic weather conditions in the Midwest during air pollution episodes with 83 
and without the influence of wildfire smoke. 84 

 85 

1.2 THE OBSERVATION OF RESULTS BY CONSIDERING A CASE STUDY 86 

Affirmations complementing our SOM analysis can be observed clearly when following a PM2.5 87 
event that occurred over the LADCO region on June 25-30, 2023. The primary reason as to why 88 
this event was so anomalous was due to the impacts caused by wildfire smoke originating in Ontario 89 
and Quebec Canada. Figure 1 illustrates the meteorological conditions during the transition 90 
between the first and second phases of the event that were dominated by an initial low-pressure 91 
system that aided in transporting polluted air into the US Midwest, followed by a high-pressure 92 
system event that led to stagnation conditions and greatly above average PM2.5 and impacts.  93 

Although not the primary topic of this study, throughout the remainder of this report we will 94 
provide extra visual elements considering this event. This is not only to display how the results of 95 
the SOM are observable when applied in a real-world context, but also as a quick reference to 96 
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certain known conditions within our input data that will point to positive signatures regarding our 97 
SOM’s functionality and performance. 98 

 99 

 100 

Figure 1 The meteorological conditions surrounding June 27th and 28th 2023 during which “very 101 
unhealthy” air quality was observed. 102 

 103 

2. METHODOLOGY 104 

The primary method contained within this study is the self-organizing maps algorithm itself. While 105 
there are a multitude of implementations for self-organizing maps written in many different 106 
programming languages, the implementation used in this study is the “MiniSOM” implementation. 107 
MiniSOM is an open-source and purely pythonic implementation of self-organizing maps that is 108 
available on GitHub. It gets its name from “minimalistic SOM” as its only dependency is the 109 
NumPy library, and it is generally used for small to medium sized datasets. 110 

The self-organizing maps algorithm seeks to produce a low-dimensional (usually two-dimensional) 111 
representation of the input space while preserving the topological properties of the original data. 112 

 113 

2.2 INPUT DATA 114 

Meteorological data: This study contains data from a variety of sources, however the primary data 115 
source that is used when training the SOM is daily meteorological reanalysis data, which is a blend of 116 
the 3-km resolution HRRRv4 (High Resolution Rapid Refresh) surface reanalysis and, 12-km 117 
resolution NAM (North American Model) reanalysis data. The dataset contains data for all June days 118 
between 2019 and 2023. The meteorological dataset has a spatial resolution (grid spacing) of 4km 119 
and is using the conditions at 18:00 UTC (12:00pm CST). The files were originally output in 120 
NetCDF format and are read into python through use of the Xarray package in python. Each 121 

https://github.com/JustGlowing/minisom
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meteorological file also contained the necessary projection information that allowed the data to be 122 
plotted on a 420 latitude by 444 longitude extent on a Lambert Conformal Conic projection. Figure 123 
2 displays the extent of our data ranges from a latitude and longitude of (34.163, -100.316) in the SW 124 
corner to (50.644, -78.027) in the NE corner. Figure 3 provides an example visualization of one of 125 
our data variables, relative humidity at the 500hPa level.  126 

  127 

Figure 2 The (LADCO) region of interest for this study on a Lambert Conformal Conic projection. 128 

 129 

 130 

Figure 3 500hPa Relative Humidity (%) for 06-25-2023 at 18:00 UTC.  131 

 132 

Although the meteorological data used for this study contains over 115 variables, only the variables 133 
that are used as inputs into the SOM will be discussed in this report. Mentioned here briefly are the 134 
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names of these variables, their available vertical levels (model levels), their units, and associated 135 
abbreviations within the dataset. Motivations for why these variables were selected for SOM analysis 136 
can be found in section 4. 137 

1. “PMSL” – Pressure at mean sea level (surface only). Units: Pascals (Pa) 138 
2. “RH” – Relative humidity (model levels 1-40). Units: Percentage (%) 139 
3. “TT” – Temperature (model levels 1-40). Units: Degrees Kelvin (K) 140 
4. “UU” – Horizontal “U” wind component (model levels 1-40). Units: meters per second 141 

(m/s) 142 
5. “VV” – Vertical “V” wind component (model levels 1-40). Units: meters per second (m/s) 143 
6. “GHT” – Geopotential height (model levels 1-40). Units: meters (m) 144 

Air quality data: In addition to the HRRR meteorological data, two other datasets were used for 145 
analysis purposes. The first is a tabular dataset containing observed PM2.5 and data from the US EPA 146 
Air Quality System (AQS). We calculated additional SOM node metrics based off four columns 147 
contained within this dataset:  148 

1. “value” – An observed PM2.5 concentration in μg/m3.  149 
2. “std_log_value” (or PM2.5 “anomaly”) – A standardized value of the measured PM2.5 150 

concentration. Standardization (i.e., normalization) was done using the monthly mean and 151 
standard deviation of the log-transformed measured values at a monitor over the 2019-2022 152 
period. This standardized value (i.e., anomaly) provides a measure for how much PM2.5 153 
concentration deviates from its typical mean.   154 

3. “HMS_binary” – A binary flag variable (either 0 or 1) that determined if overhead smoke 155 
was identified at the location of a monitor through a satellite-driven product called the 156 
Hazard Mapping System (HMS). 157 

4. “res_1sigma_std_log_value” (or “res1”) – The residual value of PM2.5 concentrations above 158 
and below 1 standard deviation, hich indicates how much the measure value was beyond the 159 
typically observed values a monitor. 160 

Figure 4 shows a visualization of the above data variables for the PM2.5 dataset: “value” (on the y 161 
axis) and “std_log_value” (on the x axis) with HMS_binary outlines. Values for 162 
“res_1sigma_std_log_value” would then be the data on the right side of the vertical dashed black 163 
line and with red outlines. 164 

 165 
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 166 

Figure 4 Scatter plot of PM2.5 concentration vs. its standardized anomaly with outlines for overhead 167 
smoke. 168 

The last dataset that we used during the final stages of this project is a “krigged” (spatially 169 
interpolated) PM2.5 dataset. This dataset is an interpolated product based off the PM2.5 ground sensor 170 
network. Figure 5 is an example visualization of the krigged PM2.5 dataset. 171 

 172 

 173 

Figure 5 Krigged PM2.5 field for 06-27-2023 displaying PM2.5 transport into the LADCO region. 174 

Although mentioned here for completeness, the krigged PM2.5 dataset is not used until section 5. 175 

 176 
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To ensure compatibility with MiniSOM two preprocessing steps needed to be applied to the data: 177 

1. Vectorization – Due to the spatial nature of the data they needed to be vectorized in order 178 
to be input into MiniSOM. 179 

2. Standard Scaling – Standard scaling (through Sci-kit learn) is a technique that scales the data 180 
between (-1 and 1) where each variable has a mean of “0” and a standard deviation of “1” 181 

Vectorization adds to the dimensionality of our data substantially and, as we will see in our analysis, 182 
this will have lasting effects as far as our quantitative metrics and furthermore in our interpretive 183 
analysis. However, because no clear alternatives to vectorization currently exist, and vectorizing our 184 
data still allows for spatial patterns in our data to be represented, this is the standard approach. This 185 
raises the question: why not use an initial dimensionality reduction technique when applying 186 
preprocessing steps? The answer to this questions lies in the interpretive need to recreate and 187 
visualize our data. Further study could potentially look at applying techniques such as t-distributed 188 
Stochastic Neighbor Embedding or Uniform Manifold Approximation and Projection as a further 189 
preprocessing step, given the nature of the non-linear relationships we are attempting to explore, 190 
however this would make the final visualizations produced from the SOM less meaningful.  191 

As a final data preprocessing step, a standardized scaler was applied to the meteorological data as 192 
preparation for input into the SOM. This study used the StandardScaler method built into Sci-Kit 193 
Learn, which scales the data to a range between -1 and 1 and a mean of 0. To account for the 194 
varying scales of the meteorological data, a standard scaler was applied individually to all variables. 195 

 196 

2.2 DESCRIPTION OF THE SELF ORGANIZING MAPS ALGORITHM 197 

Although descriptions of the Self Organizing Maps algorithm exist across many sources within the 198 
literature, a brief summary adapted from (Kohonen 1982) and (Hulle and Marc 2012) will be 199 
presented here. 200 

Step 1: Initialization 201 

The first step within the SOM algorithm happens when a grid of neurons (also called nodes) is 202 
initialized. Each neuron has a weight vector of the same dimensionality as the input data. 203 

Step 2: Training algorithm 204 

The self-organizing maps training algorithm has two main components: 205 

1. The best matching unit (BMU) 206 

The BMU is the neuron whose weight vector is closest to the input vector in terms of Euclidean 207 
distance. This can be mathematically expressed as: 208 

𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖  ∥ 𝒙(𝑡) − 𝒘𝒊(𝑡) ∥ 209 

Where:  210 

• 𝑐 is the index of the BMU. 211 
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• 𝒙(𝑡) is the input vector at time 𝑡. 212 
• 𝒘𝒊(𝑡) is the weight of the vector of the 𝑖-th neuron at time 𝑡. 213 
• ∥∙∥ denotes the Euclidean distance. 214 

 215 

2. The weight update 216 

The weight vectors of the BMU and its neighboring neurons are updated to move closer to the 217 
input vector. The update rule is: 218 

w𝑖(𝑡 + 1) = 𝒘𝒊(𝑡) + θ𝑖,𝑐(𝑡) ⋅ α(𝑡) ⋅ (𝒙(𝑡) − 𝒘𝒊(𝑡)) 219 

Where:  220 

• 𝒘𝒊(𝑡) is the weight of the vector of the 𝑖-th neuron at time 𝑡. 221 

• 𝒘𝒊(𝑡 + 1) is the updated weight vector 222 
• α(𝑡) is the learning rate, which decreases over time 223 

• θ𝑖,𝑐(𝑡) is the neighborhood function centered on the BMU 𝑐, which determines the 224 
influence of the BMU on its neighbors. In our case this has a gaussian form: 225 

θ𝑖,𝑐(𝑡) = exp (−
∥ 𝑟𝑖 − 𝑟𝑐 ∥2

2𝜌(𝑡)2
) 226 

Where:  227 

• 𝑟𝑖 and 𝑟𝑐 are the positions of the 𝑖-th neuron and the BMU 𝑐 int the grid, respectively 228 
• 𝜌(𝑡) is the neighborhood radius that also decreases over time 229 
• ∥∙∥ denotes the Euclidean distance. 230 

The neighborhood function and learning curve are time-dependent functions that decrease with 231 
time (the number of iterations) to ensure convergence. The neighborhood function is also controlled 232 
by a parameter 𝜎 (currently set to “1”) however the way these functions behave while decreasing and 233 
the value of sigma are up to the user.  234 

The current SOM implementation uses “linear_decay_to_zero” applied to the learning rate:  235 

α(𝑡) =  α0 (1 −
𝑡

𝑇
) 236 

Where: 237 

• α0 is the initial learning rate. 238 
• 𝑡 is the current iteration number 239 
• 𝑇 is the total number of iterations 240 

And “asymptotic_decay” applied to the neighborhood function: 241 
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𝜌(𝑡) =
𝜌0

1 + 
𝑡
𝜎

 242 

Where:  243 

• 𝜌0 is the initial neighborhood radius 244 
• 𝑡 is the current iteration number 245 
• 𝜎 is the time constraint that controls the rate of decay 246 

 247 

2.3 SOM HYPERPARAMETERS AND CONFIGURATION  248 

Within the primary Self-Organizing Maps algorithm established above, there also different 249 
configurations that can be achieved by tweaking a SOM’s hyperparameters. The hyperparameters for 250 
the LADCO SOM are as follows: 251 

• som_size = (3,5) 252 
• sigma = 1 253 
• learning_rate = .3 254 
• ngb_function = 'gaussian’ 255 
• decay_function = 'linear_decay_to_zero' 256 
• sigma_decay_function = 'asymptotic_decay’ 257 
• init = 'random' 258 
• train = 'random' 259 
• iterations = 200 260 
• topology = 'hexagonal'  261 
• activation_distance = 'euclidean' 262 
• random_state = ‘64’ 263 

Notable deviations from the default parameters include a hexagonal topology which allows our 264 
nodes to have more neighbors as opposed to the default rectangular topology. We have a slightly 265 
lower than normal learning rate that resulted in better performance via iterative experimentation and 266 
our learning rate decay function is set to decrease linearly as opposed to the standard asymptotic 267 
decay which resulted in better clustering via the clustering metrics as described in section 2.4. We 268 
set the number of iterations at 200 because more iterations did not result in significantly improved 269 
performance. It should be noted that, since our learning curve visualization in Figure 8 uses 270 
quantization error, and since our data are highly dimensional, this curve appears in a slightly atypical 271 
fashion as opposed SOMs that may occur elsewhere within the literature. More about LADCO 272 
SOM’s learning curve will be discussed in section 3. 273 

Most importantly within the topic of SOM hyperparameters is the SOM size, which controls the 274 
number of output neurons within the SOM. The determination of this hyperparameter is often 275 
crucial to the functionality of the SOM and is often a trade-off involving capturing more general 276 
trends, sensitivity to outliers, and having enough nodes to capture the more nuanced and 277 
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informative trends within the data (Hulle and Marc 2012). In the case of the LADCO SOM our 278 
SOM size appears to be limited primarily by the number of samples currently ingestible withing the 279 
workflow. We consider all June days between 2019 and 2023 leaving us with 149 samples (1 day of 280 
the reanalysis dataset is missing to generate due to an incomplete HRRR run for that time period). If 281 
SOM size increases in an attempt to capture harder to detect relationships within the data, we begin 282 
to observe nodes that have an activation response (or the number of samples from the input data 283 
that get classified as having that pattern, or activated that particular node during the training process) 284 
of 0. Due to this, determination the optimal SOM size for the LADCO SOM is an area for potential 285 
enhancement. However, if different climatological periods are considered or perhaps expanded 286 
upon in the future this may come naturally given the current implementation.  287 

 288 

2.4 SUMMARY OF SOM AND NODE METRICS 289 

In addition to the primary output of this study, which comes in the form of a visualization of the 290 
weights of LADCO SOM itself, there will also occur above or below each node, secondary node 291 
statistics calculated from averaged variables for all nodes that are included in the activation response 292 
for a particular node. By running each input vector through the SOM after the training period has 293 
completed, we are able to generate a map of which input vectors are considered to “match” that 294 
output node. 295 

The secondary parameters visualized alongside the weights for each variable node are: 296 

1. “Node (x,y)” – The node’s position within the SOM hexagonal grid 297 
2. “n = …” – The number of samples mapped to that particular node 298 
3. “Smoke Days” – The number of identified days that met the condition mentioned in the 299 

“Res1” variable explanation 300 
4. “Avg PM” – Average measured PM2.5 concentrations over all monitors within the domain 301 

for days classified for a particular node 302 
5. “Avg PM anom” – Similar to the Avg PM variable, but for standardized anomalies 303 

(std_log_value variable). 304 
6. “Avg Res1PM” – A node average of the “res1” variable 305 

2.5 VERTIAL PROFILE GENERATION PROCUDURE 306 

Since our meteorological data are model derived and all vertical model levels are present within the 307 
meteorological data used for this study, we are able to produce an additional secondary (or tertiary) 308 
node analysis in the form of a visualization of a node’s averaged vertical atmospheric profile. The 309 
profiles are point soundings in one location (although an extended explanation about developing the 310 
functionality further will occur in section 5) for each model level temperature, relative humidity, and 311 
u and v wind vector components. Visualization of the profile is handled by the MetPy library in 312 
Python. 313 

With these visualizations of the vertical profile, we also display calculated environmental statistics 314 
based on the profiles generated for each node.  315 

These statistics include: 316 
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1. “Node (x,y)” – Same as in section 2.4 317 
2. “n = …” – Same as in section 2.4 318 
3. “SH01” – The 0-1km environmental shear vector 319 
4. “SH06 – The 0-6km environmental shear vector 320 
5. “850hPa ω” – Vertical velocity at 850hPa 321 
6. “CIN” – Convective Inhibition 322 
7. “CAPE” – Convective Available Potential Energy 323 
8. “#TI” – Number of temperature inversions (2°C / 100hPa) 324 
9. “850-950hPa avg temp” – Average temperature difference between the 850 hPa and 950hPa 325 

levels 326 
10. “Avg PM2.5 Anomaly” – Same as in section 2.4 327 

 328 

3. RESULTS 329 

This chapter includes the following three sections: 330 

• Section 3.1 includes SOM diagnostic plots that support the primary analysis.  331 
• Section 3.2 covers the primary results of the study, the visualization of the weights of 332 

LADCO SOM, and the conclusions that can be reached as a result.  333 
• Section 3.3 will present the vertical profile results described in section 2.5 334 

 335 

3.1 SOM DIAGNOSTIC PLOTS 336 

Presented in Figure 6 and Figure 7 are the LADCO SOM distance matrix (or u-matrix) with sum 337 
scaling and mean scaling respectively. The distance matrix is used to measure the distances between 338 
the nodes in a SOM grid. This distance can be scaled in various ways, two of which are a mean 339 
(average) scaled distance matrix and a sum scaled distance matrix. The sum scaled distance matrix, 340 
visualized in Figure 6, represents the total sum of distances between (the vector values of) a 341 
particular node and all other nodes in the SOM. The sum scaled distance matrix indicates the overall 342 
quality and separation of clusters in the SOM and it can also be used to inform where potential 343 
boundaries between clusters appear within the SOM. All weight visualizations in section 3.2 will use 344 
the mean scaled distance matrix as a background color, or “frame color” for reference. 345 
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 346 

Figure 6 LADCO SOM distance matrix (sum scaled) 347 

 348 

The mean scaled distance matrix, visualized in Figure 7, is a representation of the average distance 349 
between the prototype vectors of nodes in the SOM grid. This figure provides a measure of how 350 
smoothly the input space is represented by the SOM and it can visualize the average separation 351 
between clusters. Nodes with a high value within the mean scaled distance matrix represent nodes 352 
that are on average further apart from their surrounding neighbors. Higher values in this figure 353 
indicate nodes pattern that are significantly different in structure (in our case meteorological 354 
conditions) than its surrounding neighbors.  355 

 356 

The middle sections of the LADCO SOM distance matrix have a higher total distance. 357 
Unfortunately, the high dimensionality of our data appears to affect the summed distance matrix 358 
quite a bit. The middle sections of the SOM (remember the hexagonal topology) with the more 359 
pinkish and purple values inform us that our central nodes appear to sit along a boundary between 360 
clusters (a result that is also apparent throughout the project). While we can read this result from the 361 
summed distance matrix, given the relatively small size of our SOM in general, it could have been 362 
inferred that nodes that are closer in weight values to one another would occur in a region of the 363 
SOM where we expect to see more intermediate meteorological regimes. 364 

 365 

Figure 7 LADCO SOM distance matrix (mean scaled) 366 
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As much as the sum scaled distance matrix is informative (although predictable), the mean scaled 367 
matrix is even more so, especially in light of our highly dimensional data. Figure 7’s purpose is 368 
threefold, it displays nodes that are comparatively different in relation to their neighbors (higher 369 
average separation), it displays the relative smoothness of our SOM, and it illustrates how well the 370 
topology of the original data is being preserved within the SOM. Interpretable from Figure 7 is a 371 
primary cluster of nodes with higher average separation in the lower left hand corner and 372 
throughout the middle of the SOM. With these nodes all having values in the upper ranges for mean 373 
scaled distance we can understand that (A) this local region of the SOM contains a wide range of 374 
types of cases (meteorological setups representing the placement and orientation of high pressure in 375 
this case) that are distinct from one another, and (B) looking globally at our entire mean scaled 376 
distance matrix, we can see that although topological relationships are being preserved, there still 377 
exist regions of the SOM that are better than others. Visualizations of the quantization error (QE) 378 
and topographic error (TE) learning curve for the LADCO SOM in Figure 8 and Figure 9 will 379 
examine possible reasons and justifications for this observation. 380 

 381 

Figure 8 Learning curve showing quantization error decreasing with 200 iterations  382 

 383 

Figure 9 Learning curve showing topographic error decreasing but then increasing slightly with 384 
number of iterations 385 
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A very simple observation that can be reached from briefly examining the learning curves for the 386 
LADCO SOM is that both the QE and TE learning curves display atypical behavior. For the QE 387 
curve our final QE error is 824, which is much greater than the close to zero value normally 388 
observed for typical SOM applications. This is explainable keeping in mind how QE is calculated in 389 
the first place and considering the dimensionality of our data. 390 

Quantization error is calculated by the formula: 391 

𝑄𝐸 =
1

𝑁
 ∑ ∥ 𝒙𝑖 − 𝒘𝐵𝑀𝑈(𝑖) ∥

𝑁

𝑖=1

 392 

Where: 393 

• N is the number of samples. 394 
• 𝒙𝑖 is the 𝑖-th sample in the dataset. 395 
• 𝒘𝐵𝑀𝑈(𝑖) is the weight vector of the Best Matching Unit (BMU) for the 𝑖-th sample. 396 

• ∥∙∥ denotes the Euclidean distance. 397 

As noted in the quantization error formula, QE is primarily a Euclidean distance measure. For the 398 
LADCO SOM the QE converges to 824 as a side effect of our data’s dimensionality where our 399 
SOM is actually performing quite well, however because each of our input variables has a vectorized 400 
length of 186,480, combined with the face that one sample in the dataset has 6 variables, each 401 
sample has a vectorized length of 1,118,880. Considering our high dimensionality, this means that 402 
even small residuals between an input vector and its matching BMU are propagated in relation to the 403 
data’s dimensionality, when in reality, a QE of 824 means that 824/1,118,880 = 0.00073… the 404 
average error of individual elements within the input array and its BMU is comparatively very small. 405 

Turning our attention to the topographic error, we notice an unusual trend by iteration 25, in that 406 
our TE begins to increase and then level out with increasing iterations. Topographic error is 407 
calculated by finding the first BMU and the second BMU, and a sample for which these two nodes 408 
are not adjacent counts as an error. The topographic error is given by the total number of errors 409 
divided by the total number of samples. A similar trend was observed in Forest et al. (2021)where 410 
the phenomenon of increasing TE is correctly explained: “Topographic error shows the trade-off 411 
between self-organization … and the resulting clustering quality” who further went on to mention 412 
how “A practitioner could thus choose to use an early stopping strategy … but it would harm the 413 
quality of the clustering.” Essentially, the increase in TE of the LADCO SOM is related to an 414 
increase in clustering quality, where, by to some extent ignoring the data’s topological relationships, 415 
better clustering can be achieved. 416 

While this result may initially be concerning, given the day-to-day variability in mesoscale 417 
meteorological patterns, it is expected that any given sample may not be similar enough to its second 418 
BMU to count as a topographic error, the outcome of which can be observed in both the mean 419 
scaled distance matrix in Figure 7 and the explicit TE learning curve in Figure 9. Furthermore, the 420 
phenomenon of increasing TE may also be in part due to the high dimensionality of the input data 421 
diminishing the overall utility and representation of Euclidian distances in our data space, as seen by 422 
the QE learning curve in Figure 8. 423 
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 424 

3.2 LADCO SOM WEIGHT VISUALIZATIONS 425 

The primary results from the LADCO SOM present what a classification of meteorological regimes 426 
looks like to a self-organizing map. The resulting clusters (nodes) are then compared using the 427 
metrics presented in section 2.4. This section will serve primarily to introduce the weight 428 
visualizations, where further discussion is prompted based on these results in section 4. Results will 429 
be presented in the order they were introduced in section 2.2. Sections 3.2.1 through 3.2.5 will 430 
cover the results of the purely meteorological LADCO SOM, in which other variations of this 431 
primary LADCO SOM being introduced later. 432 

3.2.1 Variable: Mean Sea Level Pressure (surface level) 433 

 434 

Figure 10 The weights for Mean Sea Level Pressure within LADCO SOM in Pascals. 435 

Mean Sea Level Pressure (MSLP) is primarily characterized by either high pressure (in the lower left 436 
corner) or low pressure (in the lower right corner). In between transition states with no dominant 437 
pressure pattern occurring within the middle of the SOM and in the upper right and left most 438 
corners. The MSLP weights present an overall view of conditions at the surface and will be referred 439 
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to frequently through the remainder of this report. Node (0,1) is dominated by a weak high-pressure 440 
pattern and node (1,3) is dominated by a strong northeastern low-pressure system. As evident by the 441 
caption below, each node presents two very different meteorological pressure patterns that occurred 442 
within the 2023 Canadian wildfire event introduced in section 1, which will hereby be referred to as 443 
the 2023 EE (exceptional event).  444 

The MSLP weights for within LADCO SOM suggest that higher PM2.5 anomalies can be expected 445 
during high-pressure patterns less than 1016hPa. These nodes are associated with stagnation 446 
conditions and less dynamic motion within the atmosphere, and diminished advective processes 447 
transporting emissions or wildfire smoke out of the LADCO region. The MSLP field in nodes (2,3) 448 
and (2,4) describe a situation where the LADCO region is in between a high pressure system to the 449 
south (with presumably anticyclonic motion) and a low pressure system to the north (with 450 
presumably cyclonic motion). These two flows will enhance transport within the region which 451 
indicates that in low pressure dominated nodes, environments conducive to westerly transport are 452 
associated with stronger transport into the region and elevated PM2.5 impacts occur as a result. 453 
MSLP was chosen as an input variable as MSLP is one of the most recognizable patterns in 454 
forecasting, and it is a surface variable that is normalized to account for the Appalachian Mountains. 455 

3.2.2 Variable: 500 hPa level Relative Humidity 456 

 457 



 

18 

 

Figure 11 The weights for 500 hPa relative humidity within LADCO SOM in percentage (%). 458 

 459 

The 500hPa relative humidity (RH) is a weak predictor for the LADCO SOM for June. Taking the 460 
average RH value for a node and comparing it to variation in the PM2.5 field yields a Spearman 461 
Correlation of -0.067 and a P-value of 0.81. Despite RH being a weak predictor, some notable 462 
trends are still interpretable from the RH variable. Mainly within our high pressure dominated nodes 463 
we see definitive dry streaks at the mid-levels, and in the opposite corner we also see sharp moisture 464 
gradients within nodes that have near 0 average PM2.5 anomaly. This may have not been noticeable 465 
from the MSLP weights as there is most likely some dilution of the field due to averaging within the 466 
pressure field, but these sharp RH gradients may be indicative of higher cloud cover over the 467 
LADCO region which would be associated in this case with frontal passage and storms, in turn 468 
leading to increase wet deposition and lower PM2.5 anomaly. The choice to include relative humidity 469 
at the 500hPa level is motivated by variations in the mid-level moisture profile, variations that can 470 
become plainly visible in the vertical profile plots presented in section 3.3. 471 

3.2.3 Variable: Surface Level Temperature 472 

 473 
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Figure 12 The weights for surface temperature within LADCO SOM in Kelvin (K). 474 

 475 

Two primary surface temperature patterns emerge based on Figure 12. The left side of the SOM is 476 
characterized by warmer southern temperatures extending northward, and the right side is 477 
characterized by cooler northern temperatures extending southward. The statistical relationship 478 
between node averaged surface temperatures and PM2.5 concentration is slightly stronger with a 479 
Spearman correlation 0.44 and a p-value of 0.099 indicating the relationship is slightly positive 480 
(higher temperatures correlate with higher PM2.5 anomaly) and it is statistically significant at the 10% 481 
level. In addition, standard temperature tends where colder temperatures appear northward, and 482 
warmer temperatures occur southward. Nodes such as (0,2), which present a more unique 483 
temperature setup with a conveyor belt of warm air extending as far north as southern Michigan, 484 
associated with anticyclonic motion from the south, and node (0,4), which has a protrusion of colder 485 
air extending into Missouri, a trend consistent with previous associations of node (0,4) with the 486 
fronts passing over the LADCO region. Although low variability surface temperature makes trends 487 
within LADCO SOM harder to visualize, it was selected as input variable because surface 488 
temperature is one of the most commonly measured parameters in meteorology, and both PM2.5 489 
impacts, and human impacts can be better understood considering it. 490 

3.2.4 Variable: 250hPa level U and V wind components 491 

    492 

Figures 13a-b The weights for U and V wind components within LADCO SOM in meters per 493 
second (m/s). 494 
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The U Figure 13a and V Figure13b wind vectors are incorporated into the SOM as separate 495 
variables, however, to improve readability these are commonly combined into the total wind speed 496 
magnitude as seen in Figure 16. The 250hPa level is informative when diagnosing warm season jet 497 
streak patterns (as opposed to the more traditional 300hPa level in the cool season). Figure 14 and 498 
Figure 15 present a very abbreviated summary of some primary concepts of jet streak motion and 499 
dynamics from figures adapted from (Keyser and Shapiro 1986).  500 

 501 

 502 

Figure 14 A schematic of jet core dynamics in horizontal plane. 503 

 504 

 505 

Figure 15 A schematic of jet core dynamics in a vertical cross-section view. 506 

 507 
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To summarize, quadrants of the jet core correspond with either upper-level convergence or upper-508 
level divergence, which themselves are associated with vertical ascent or subsidence within the 509 
atmosphere. Our interpretation of Figure 14 will rely on knowledge of these concepts. 510 

 511 

Figure 16 250hPa level wind speed field derived from LADCO SOM in meters per second (m/s). 512 

 513 

Analyzing the wind speed field from the LADCO SOM yields several conclusions. Among them, is 514 
evidence that upper-level convergence (atmospheric subsidence) and downward motion within the 515 
atmosphere is associated with higher PM2.5 anomaly; however, the inverse is not explicitly true. 516 
Upper-level divergence is generally a feature found within the LADCO region in conjunction with 517 
severe storms and deepening mid-latitude low pressure systems. While not necessarily for severe 518 
storms, these general quadrants of the jet streak are often used as forecasting tools that can inform 519 
where areas of more severe weather are expected. LADCO SOM adds an additional layer of 520 
understanding and importance to analyzing the jet streak layer as areas where upper-level 521 
convergence is expected can be seen as an indicator for higher PM2.5 concentrations at the surface. 522 
Given the conclusions interpretable by these fields, as well as the valuable information the jet steak 523 
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layer presents to forecasters in terms of synoptic level transport, the U and V wind fields presented a 524 
natural choice in terms of inclusion into LADCO SOM.  525 

           526 

3.2.5 Variable: 850hPa Geopotential Height 527 

 528 

Figure 17 The weights for geopotential height within LADCO SOM in meters (m). 529 

 530 

The geopotential height field was chosen as an input into the SOM in an attempt to give LADCO 531 
SOM a variable that can act as a classification basis for considering mid-tropospheric flow and the 532 
vertical orientation of fronts or pressure systems. The primary geopotential height trend observable 533 
from the SOM is in relation to the geopotential gradient. For high pressure dominated nodes, when 534 
the distance between isohypses (lines of constant geopotential height) is large, this is associated with 535 
less dynamical motions and stagnation conditions, and consequently, higher PM2.5 anomaly. When 536 
the LADCO region falls under a tighter geopotential gradient the result is a lower PM2.5 anomaly as 537 
seen in nodes (1,1) and (1,2). This tighter geopotential height gradient indicates stronger advection 538 
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within the region that clears out pollutants. However, this trend does not seem entirely robust for 539 
lower pressure dominated nodes as the LADCO region appears to be within a loose geopotential 540 
gradient in nodes (0,3) and (0,4) whilst the PM2.5 anomaly is near zero and even slightly negative. 541 
However, it has yet to be proven if this is an artifact of our averaging methodology, where these 542 
nodes may contain samples where both positive and negative extremes lead to a near zero average 543 
and should be examined in future work. In any case, considering the position of the jet streak, and 544 
the established westerly flow in nodes (2,3) and (2,4), our gradient trend appears to inverse for low 545 
pressure dominated nodes, with tighter gradients leading to higher PM2.5 anomaly. Although this 546 
trend may prove to not be linear in nature, the following mental model is provided for air quality 547 
forecasters. 548 

 549 

 550 

Figures 18a-b Mental model to aid in operational forecasting of air quality given the 850hPa 551 
geopotential height field. 552 

 553 

3.3 LADCO SOM VERTICAL PROFILE ANALYSIS 554 

Following the procedure described in section 2.5, vertical profiles for each node were generated. 555 
Figure 19 visualizes the results from this procedure. 556 

 557 
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 558 

Figure 19 Averaged vertical profiles for each node within LADCO SOM with MSLP pattern in 559 
upper right corner. 560 

 561 

Figure 19 presents several notable trends, the first of which can be seen by looking at the moisture 562 
profiles across all SOM nodes. Although there are exceptions, generally mid-level moisture around 563 
the 500hPa level varies greatly, and across the SOM, entire moisture profiles get more saturated 564 
starting from the lowest left node (2,0) (dryest) to the uppermost right node (0,4) (most saturated). 565 
Notable exceptions to this rule are nodes (1,1) and (1,2) which appear to be surrounded by vertical 566 
profiles that are drier. However, these two nodes (that both have very negative PM2.5 anomaly) 567 
uniquely seem to have a low-level dry layer near the 900hPa level. Figure 20 displays a zoomed in 568 
version of Figure 19 with these two nodes highlighted. Although nodes (1,1) and (1,2) do not 569 
contain an above average number of identified temperature inversions, these dry conditions at the 570 
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surface could indicate stronger mixing at the surface which acts to disperse pollutants upward, or the 571 
drier conditions at the surface could work to reduce the rate chemical reactions that lead to the 572 
formation of secondary PM2.5 production such as interaction with sulfate and nitrate aerosols (which 573 
may be particularly applicable given these sounding originate over Chicago, IL). However, more 574 
work is necessary to see if this is indeed the case. Another similarity these nodes seem to share is 575 
comparatively less steep 850-950hPa environmental lapse rates, a trend shared by nodes (0,3) and 576 
(2,1) which are both accompanied by slightly negative PM2.5 anomaly. 577 

 578 

 579 

Figure 20 Averaged vertical profiles for nodes (1,1) and (1,2) with low level dry layer near 900hPa. 580 

 581 

Another trend that is apparent from Figure 19 corresponds to the direction and strength of winds at 582 
and near the surface level. Nodes (2,0), (1,0), and (0,1) all have slow surface winds that blow 583 
eastward, and all have elevated PM2.5 anomaly, with nodes (1,4) and (2,4) also having significantly 584 
positive PM2.5 anomaly however calm winds at the surface as opposed to eastward. 585 

Also shared among high pressure dominated nodes that boast significantly high PM2.5 anomaly is 586 
low 0-1km shear. Nodes (2,0), (1,0), and (0,1) again all seem to have this in common. With all three 587 
nodes having a high pressure dominated MSLP condition, low 0-1km shear points plainly to a 588 
correlation of PM2.5 impacts with stagnation at the surface. Nodes (2,0) and (1,0) share the additional 589 
similarity of positive 850hPa ω values. An indicator for downward vertical motion in the 590 
atmosphere. 591 

Figure 21 presents a zoomed in view with a grouping of the high PM2.5 anomaly nodes mentioned 592 
above for easier reference. 593 
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 594 

 595 

Figure 21 Averaged vertical profiles for nodes (2,0), (1,0), (0,1), (1,4) and (2,4). The top row is 596 
characterized by slow and eastward surface winds, bottom row with calm conditions at the surface. 597 

 598 

4. APPLICATIONS  599 

Although pipelines and code for operational use have yet to be implemented, LADCO SOM (or an 600 
improved version of the SOM in the future) has potential for operational use in the field of air 601 
quality forecasting. By inputting the conditions of, for example, a forecast hour +48 HRRR run 602 
initialized at 0z, a classification of the modeled atmospheric conditions can be outputted by LADCO 603 
SOM. Doing so would allow decision makers an initial forecast of the expected air quality given the 604 
atmospheric conditions modeled for the future. Currently LADCO SOM only has knowledge of 605 
June PM2.5 events across multiple years, an updated operational model would most likely require data 606 
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spanning multiple months and years, unless it was determined that a more specialized SOM for a 607 
specific time period performed better. Perhaps two versions of a SOM are given different data, one 608 
corresponding to cold season months and one corresponding to warm season months. Each SOM 609 
could be asked to classify the conditions for each day, and the two SOMs running in parallel could 610 
cover any days that might be during transitions between seasons, or any anomalously warm or cool 611 
days. Moreover, separate SOMs given data corresponding to ENSO patterns (El Niño & La Niña) 612 
may also provide additional insight into broader climatological trends specific to the LADCO 613 
region. 614 

Air quality forecasters may also find use in inputting the current atmospheric conditions, or the 615 
atmospheric conditions from a past event to give an indication for whether or not that particular 616 
meteorological setup is synonymous with a certain type of PM2.5 anomaly. In this way it is possible 617 
to examine the relative anomaly (anomaly detection) of certain events given knowledge of data 618 
within the same seasonal period. 619 

Much like the insights gained from this study, given a larger and temporally comprehensive set of 620 
data, an updated version of LADCO SOM may be able to discover harder to detect meteorological 621 
relationships and classify these similarities into representative analogs, that may have transferable 622 
relationships between pressure dominance regardless of season, or seasonal relationships regardless 623 
of pressure dominance. 624 

There also exists room for policy evaluation within LADCO SOM (or a future version with an 625 
expanded dataset), although perhaps it is not the most direct way of doing so. One way to 626 
accomplish a policy evaluation using a SOM would be to provide a SOM with historical 627 
meteorological data (and optionally air quality data) before policy implementation to get a baseline 628 
understanding of typical patterns and relationships identified by the SOM initially. Then after a 629 
policy has been implemented, either look for shifts in patterns that indicate changes in quality under 630 
similar meteorological conditions, or (if given air quality data) look to see if similar clusters exist 631 
whose primary distinction is on the basis of PM2.5. If possible, then examine further similar nodes to 632 
analyze what time period samples commonly mapped to each node are from. If two nearby nodes 633 
have a similar meteorological setup, but one node has a lower average PM2.5 concentration, and the 634 
samples within that node come from a time after the policy was implemented, this could be a sign 635 
that a certain policy was effective. Although perhaps a more actionable response might be to then 636 
perform a more rigorous comparative analysis of each node, now informed by the SOM of the 637 
data’s meteorological similarity. 638 

 639 

5. FUTURE IMPROVEMENTS  640 

This section will outline aspects of LADCO SOM that should be targeted for improvement in the 641 
future. Many are simple enhancements, among them different (or just more) input data distributions 642 
as mentioned in section 4. However, of the improvements mentioned below, several would 643 
significantly alter (and improve) the current functionality of LADCO SOM. While worthwhile, the 644 
time required to perform such modifications is left to future work. This section will be broken down 645 
into subsections relating to each potential improvement. 646 
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5.1 LADCO SOM + KRIGGED PM2.5 647 

In the later stages of the project a question occurred that was: would the results of the SOM 648 
clustering significantly improve given knowledge of PM2.5 concentrations on the ground? To answer 649 
this question, we explored a few different options, although just imputing an average PM2.5 variable 650 
tacked on as a column on the end of the dataset was not successful, owed to the dataset’s high 651 
dimensionality. For this a PM2.5 variable with the same dimensions as a single meteorological 652 
variable needed to be considered. This was accomplished via the creation of a “krigged” (spatially 653 
interpolated) PM2.5 dataset. A visualization of what this dataset looks like when plotted over the 654 
study region is displayed in Figure 5.  655 

The krigged PM2.5 dataset was able to be successfully integrated into LADCO SOM’s code, however 656 
the results were not necessarily informative to the research question. Figure 22 presents the results 657 
of LADCO SOM being run with all 6 meteorological variables + the krigged PM2.5 dataset as input 658 
variables. 659 

 660 

 661 

Figure 22 The weights for MSLP within LADCO SOM with the krigged PM2.5 variable. 662 
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The resulting SOM appears to classify every day from the 2023 EE into one node. Except, this is 663 
questionable because we are certain that the meteorological conditions changed significantly 664 
throughout the course of the event period. This version of LADCO SOM model built with krigged 665 
PM2.5 indicates that i) The 2023 EE days are being classified together into a node could be due to the 666 
extremely anomalous PM2.5 impacts, and ii) it calls for examination of surface input variables when 667 
using the krigged PM2.5 field. Instead of gleaning insight into the meteorological conditions 668 
associated with these impacts, we get yet another indicator that is event is extreme, which is already 669 
known. Figure 23a displays this undesirable behavior, pay particular attention to the scale in 670 
(μg/m^3), Figure 23b is generated with a high value mask to see PM2.5 values within the first 671 
interval of Figure 23a. 672 

 673 

        674 

Figure 23a-b The weights for the krigged PM2.5 variable within LADCO SOM + krigged PM2.5. 675 

We can see clearly that there certainly exist interesting PM2.5 relationships with meteorology data, 676 
although we are also certain that this data is being significantly impacted by the 2023 EE. Hence, 677 
improvements to the meteorological variables + krigged PM2.5 SOM is left for future work, a 678 
possible direction may be as simple as excluding the 2023 EE. 679 

 680 

5.2 OZONE SOM ANALYSIS 681 

Another SOM application that initially started off as a part of the project, but then fell off due to 682 
time constraints is an analysis of ground level ozone. Given ozone’s more predictable relationship 683 
with meteorological conditions, a version of LADCO SOM that does a thorough analysis of ozone 684 
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would be extremely beneficial. In its current state LADCO SOM is capable of calculating statistics 685 
of SOM-grouped ozone data, however interpretation of these results remains a challenge. Figure 24 686 
displays LADCO SOM with ozone statistics visualized. 687 

 688 

Figure 24 The weights for MSLP within LADCO SOM with calculated ozone statistics. 689 

As the data currently stands the highest ozone anomaly is 0.04 associated with node (1,1) which isn’t 690 
particularly anomalous, although interestingly is associated with a node whose vertical profile has a 691 
dry layer near the surface. The shortfalls of LADCO SOM in ozone classification perhaps lay within 692 
low ozone variability in the month of June for the LADCO region? Therefore, an increasingly 693 
seasonal dataset may prove useful for further ozone analysis. Particularly for the ozone case, 694 
incorporation of a krigged ozone dataset based off of ground monitors may provide the SOM with 695 
extra knowledge of ozone concentrations to cluster nodes off of. 696 

 697 

5.3 LADCO SOM WITH ADDITIONAL METEOROLOGICAL VARIABLES 698 

A potential way to address the current issues with the SOM presented in 5.1, is to add more 699 
meteorological variables to offset the proportion of the input space the krigged PM2.5 takes up. 700 



 

31 

 

While this significantly adds to the dimensionality of the SOM (and substantially to the overall 701 
runtime), considering that dimensionality already presents an issue within the study, a test was ran 702 
considering an expanded array of meteorological variables. While the same six meteorological 703 
variables were used within as introduced in section 2.2 this expanded version of the SOM, LADCO 704 
SOM was given the data for these variables at the “critical levels” within the atmosphere. The full 705 
array of considered variables is as follows in the code: 706 

variables = [ 707 

    ('PMSL', None), 708 

    ('RH',1), ('RH',4), ('RH',8), ('RH',14), ('RH',22), ('RH',32), 709 

    ('TT',1), ('TT',4), ('TT',8), ('TT',14), ('TT',22), ('TT', 32), 710 

    ('UU',1), ('UU',4), ('UU',8), ('UU',14), ('UU', 22), ('UU',32),  711 

    ('VV',1), ('VV',4), ('VV',8), ('VV',14), ('VV',22), ('VV', 32), 712 

    ('GHT',1),('GHT',4),('GHT',8),('GHT',14),('GHT',22),('GHT',32), 713 

    ('KPM', None) 714 

] 715 

Where variables only available at the surface have a level “None” and the associated pressure levels 716 
with model levels are as such: 717 

1 = Surface level (near 1000hPa) 718 

4 = 950hPa 719 

8 = 850hPa 720 

14 = 700hPa 721 

22 = 500hPa 722 

32 = 250hPa 723 

Figure 25 demonstrates how the 2023 EE days are no longer classified into a single node, and 724 
meteorological variables are once again primarily used for distinctions between nodes. The most 725 
apparent problem the expanded SOM presents is exponentially higher dimensionality where each 726 
input vector has of length ~6Million “columns”. For this reason, it is hard to gauge whether 727 
classifications made the expanded LADCO SOM are accurate, visualizations of other variables 728 
within the expanded LADCO SOM present somewhat contradictory information to those discussed 729 
within this report, although the legitimacy and verification of these results is questionable and hence 730 
left to future work. An initial step for improving the LADCO SOM model is to conduct an 731 
exploratory analysis on a representative set of input variables guided be Principal Component 732 
Analysis or other dimensionality reduction techniques prior to building SOM models. 733 

 734 
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 735 

Figure 25 The weights for MSLP within the expanded LADCO SOM. 736 

 737 

5.4 DIMENSIONALITY AND QUANTITATIVE ANLYSIS IMPROVMENTS 738 

Owing to the extremely high dimensionality of our input data, quantitative clustering metrics have a 739 
harder time diagnosing proper hyperparameters for LADCO SOM. The SOM presented within this 740 
paper has the following clustering metrics: 741 

Calinski-Harabasz Score: 14.7473, Silhouette Score: -0.0242, Davies-Bouldin Index: 2.4361 742 
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While these metrics are generally used to evaluate different hyperparameter configurations, it is 743 
plainly noticeable that our Silhouette score is negative (when higher values for Silhouette score are 744 
supposed to represent better clustering); and while this might be cause for concern in other cases, it 745 
was not mentioned earlier in the report as there is and explainable reason for this. Figure 8 746 
displayed the best QE achieved by LADCO SOM is around 824, and this is due to our highly 747 
dimensional data. Our Silhouette score is negative for a similar reason. Silhouette score measures 748 
how similar a point is to its own cluster compared to other clusters, which is this case leads to all 749 
points being roughly equidistant from each other, which is resulting in a negative Silhouette score. 750 
Similar interpretations can be reached when considering Calinski-Harabasz Score and the Davies-751 
Bouldin Index. 752 

Calinski-Harabasz Score: This score evaluates the ratio of the sum of between-cluster dispersion and 753 
within-cluster dispersion. High dimensionality is leading to increased within-cluster dispersion due to 754 
the curse of dimensionality, where distances between points become less meaningful as 755 
dimensionality increases. 756 

Davis-Bouldin Index: This index evaluates the average similarity ratio of each cluster with its most 757 
similar cluster, considering cluster centroids. Considering the dimensionality of input data, our 758 
centroid might not be a good representation of the cluster, leading to higher index values. 759 

In all three cases, the results align with challenges posed by high dimensionality. How then is 760 
LADCO SOM being evaluated? To this we point to trial and error during hyperparameter 761 
adjustment, manual inspection, and using close to default settings, with the initial requirement that 762 
every step (including the results) is understood, explainable, or interpretable. We also know from 763 
(Hewitson and Crane 2002) that the results of the SOM are less dependent on the data conforming 764 
to a specific distribution or underlying model. 765 

Since no methods exist for perfectly reconstructing high dimensional data spaces within non-linear 766 
manifold representation learning, and that LADCO SOM relies on data of the same shape to 767 
reconstruct any useful visuals, we are currently at a stalemate with this dimensionality.  768 

However, potential improvements on the front of LADCO SOM’s dimensionality could come in 769 
the form of applying additional dimensionality reduction techniques before consideration by the 770 
SOM such as t-Distributed Stochastic Neighbor Embedding (t-SNE) or Uniform Manifold 771 
Approximation and Projection. Although in effect we are not trying to explicitly reduce the 772 
dimensionality of our data (as in get rid of less informative columns) and instead are trying to reduce 773 
the amount of data it takes to represent them. In this way LADCO SOM can still be thought of as 774 
on par with these dimensionality reduction techniques in regards to the presentation of analogs for 775 
meteorological conditions, that describe (in much fewer cases) a representative map for classifying 776 
the meteorological conditions of future PM2.5 events. 777 

 778 

6. CONCLUSIONS 779 

The report has demonstrated how Self-organizing maps (SOMs) can provide additional insight into 780 
classifying meteorological conditions and their associated PM2.5 impacts and provided justification 781 
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for modes of vertical transport capable of carrying fire smoke to the surface. Moreover, based on a 782 
known extreme event such as the late June 2023 event we confirm that the SOM’s behavior is both 783 
predictable and explainable. Finally, we present applications for this research in the field of air 784 
quality forecasting and analysis and demonstrate the need for future research on the topic. 785 
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