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PROJECT BACKGROUND
• Periodically, fire smoke is transported into the Midwest and 

results in unhealthy concentrations of  fine particulate matter 
(PM2.5)
• The US Midwest’s central placement within the North American 

continent makes it a common place for a diverse range of  
meteorological and chemical processes
• The identification of  common meteorological setups associated 

with PM2.5 concentrations is applicable to both the fields of  air 
quality and meteorology
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PROJECT GOALS
• Find common weather patterns that occur alongside high PM2.5 

days in the month of  June for the LADCO region and analyze 
their potential for long range pollution transport
• Interpret the results of  our SOM (Self  Organizing Map) and 

apply this understanding to an exceptional PM2.5 event that 
occurred on June 25-30th 2023
• Compare the synoptic weather conditions in the Midwest during 

air pollution episodes with and without the influence of  wildfire 
smoke
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RESEARCH QUESTION
How can Self  Organizing Maps (SOMs) be used to identify meso-
scale meteorological conditions associated with high PM2.5 and 
fire smoke impacted conditions in the LADCO region?



JUNE 25-30th CANADIAN 
WILDFIRE EXCEPTIONAL 
EVENT
Source: 
LADCO Exceptional Event TSD
- AirNowTech
- NOAA’s Hazard Mapping System (HMS)
- NOAA/NASA GOES-16

5Chicago Skyline June 27 Jamie Keleter Davis/Bloomberg via Getty Images
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2023 JUNE 25-30 EXCEPTIONAL PM EVENT



SELF ORGANIZING MAPS 
(SOMs) ALGORITHM
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SELF ORGANIZING MAPS ALGORITHM
• Self  Organizing Maps (SOMs) 

were originally proposed in 1982 
by Teuvo Kohonen. 
• Artificial neural network. 
• Finds lower dimensional 

relationships in high dimensionality 
data.
• Attempts to preserve the original 

structure (topology) of  the data.
• Doesn’t make any underlying 

assumptions about the data (such as 
PCA that assumes a linear 
relationship).

By Agor153 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19392687

By Mcld - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10373592
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SELF ORGANIZING MAPS IMPLEMENTATION
• “MiniSOM”
• Written in python by “JustGlowing” + 

contributors
• Accessible on Github
• https://github.com/JustGlowing/minisom

• Minimalistic implementation of  Self  
Organizing Maps that relies only on the 
Numpy library
• Cited more than 300 times
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WHAT KIND OF SOM ARE WE USING?
• Abbreviated SOM Hyperparameters:
• SOM size of  3 rows and 5 columns 
• Gaussian neighborhood function
• Hexagonal topology
• Euclidean distance function
• 200 training iterations 
• Randomly initialized
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SOM INPUT DATA
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LADCO DATA BACKGROUND
• Daily 4km HRRR-NAM 

reanalysis data
• Midwestern extent
• 149 samples comprising of  all 

June days between 2019 and 
2023*

* = June 1st, 2023, is missing due to an incomplete HRRR run 

500hPa RH for 2023-06-26
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MULTIVARIATE SPATIAL MINISOM
• We want to include all of  our variables. However, we can’t just 

input this data into MiniSOM as is. {ValueError}
• The tabular oriented data structure of  MiniSOM is not conducive 

to our inherently spatial data.
• What is the best way to make our data look “tabular”?

A possible solution?  -> Vectorization
Before 
[[a, b],  
[c, d]]

After 
[a, b, c, d]
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METEOROLOGICAL VARIABLES USED
• Mean sea level pressure
• 500hPa Relative Humidity
• Surface Temperature

• 300hPa U-wind and 300hPa 
V-wind
• 850hPa Geopotential 

Heights
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NODE PM2.5 METRICS PART 1 OF 4
• “n” 
• Number of  samples classified into that node

• “Smoke Days” 
• Number of  samples within a particular node with both identified smoke 

aloft and significantly elevated PM2.5 at the surface (sigma >1)
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NODE PM2.5 METRICS PART 2 OF 4
• “Avg PM” 
• Node averaged PM2.5 concentration for all ground monitors across all 

days classified into that node

• “Avg PM anom” 
• A standardized value of  log transformed

PM2.5 concentration.
• Measures the relative PM2.5

anomaly of  a PM2.5 measurement,
and when averaged and applied to 
the SOM, a particular node.
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NODE PM2.5 METRICS PART 3 OF 4
• “Avg Res1PM”

• An average residual value of  
PM2.5 that is applied on only the 
samples that have a Standardized 
Value > 1 AND where HMS 
Binary = 1
• It is taken considering an average 

of  whole node (all days and 
samples)

• Tells us how much PM2.5 
concentration increased beyond 
the high end of  what is normal
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NODE PM2.5 METRICS PART 4 OF 4
• All PM Metrics by 

year:



SOM: METEOROLOGICAL 
ANALYSIS AND 
CONCLUSIONS 
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(Pa)

Notable features: 

1. Node (0,1) Stagnation conditions with a blocking 
high pressure system over SE of  LADCO region.

a. Associated with the highest PM2.5 Anomaly 
(sigma~ 1.7) of  any node

b. PM2.5 increased by 47 μg/m3 on average from the 
mean+1sigma

2. Node (1,3) Smoke is transported into the LADCO 
region via a low-pressure system and cyclonic flow.

a. Near-zero PM anomaly and lower residual value 
indicate that the fire smoke impact was not over the 
domain extent, but localized. It is an averaging 
artifact for a narrow pollutant transport path. 

3. Node (1,0) and Node (1,4) Higher PM residuals are 
present when there is no pressure dominance or 
within a transitory state between high and low 
pressure
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MEAN SEA LEVEL PRESSURE
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850hPa GEOPOTENTIAL HEIGHT
Notable features:

1. Positive PM2.5 anomalies are observed to increase 
when LADCO region is not within a geopotential 
height gradient leading to (2) and (3) and (4)

2. Greater distance between isohypses (lines of  
constant geopotential height) appears to correlate 
with positive PM2.5 anomalies in high-pressure 
dominated nodes (1,0) and (0,1)

3. Vertically stacked high pressure of  node (2,0) 
compared to node (2,1) and node (2,2)

4. For low pressure dominated nodes this looks 
almost inverse in which nodes (0,3) and (0,4) both 
have slightly negative PM2.5 anomaly.
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GEOPOTENTIAL GRADIENT EXAMPLE
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JET CORE DYNAMICS
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300hPa WIND SPEED
Notable features: 

1. Node (0,1) Upper-level convergence over LADCO 
region associated with synoptic scale sinking air 
motion (Air transport to the near surface level)

2. Node (1,3) Upper-level divergence associated with 
synoptic scale lifting air motion. (Low deepening)

3. Node (1,3) Stronger jet streaks support stronger 
advective motion aloft 

4. Nodes (0,3) and (0,4) have negative PM2.5 anomaly 
and are associated with upper-level divergence. 
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VERTICAL PROFILE 
ANALYSIS
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MODEL DERIVED SOUNDINGS
• We would like to determine if  overhead smoke is being transported 

down to the surface within a specific node
• To do this the generation of  a vertical profile would be informative
• However, it is not explicitly an output of  the SOM. Although a SOM 

has been applied to atmospheric soundings in the past: (Nixon et al. 
2023)
• We do know, however, which samples are mapped to each node
• Thus, is it possible to create an averaged vertical profile for a particular 

node based off  the samples classified into that node
• The results for LADCO SOM are the following… 

• All soundings are taken from Chicago, IL
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QUICK RECAP:SKEW-T BASICS
Atmospheric Pressure

Temperature lines “skewed”

Wind speed / Direction

In
cre
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ng
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igh
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Environmental 
temperature 
profile

Environmental 
humidity profile

Profile of  a “parcel” 
launched at the 
surface

• Visualization tool for 
assessing the vertical 
change in temperature and 
humidity with height
• Useful for assessing 

atmospheric stability, 
temperature inversions, 
and much more.
• Averaged profiles are less 

specific but still 
informative
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NODE VERTICAL PROFILES
Notable features:

1. Mid level moisture profiles vary greatly

2. Nodes (1,0) and (2,0) both have very 
positive 850hPa ω
• Low SH01 and SH06
• High PM2.5 anomaly

3. High PM2.5 anomaly profiles commonly 
have calm or eastward winds at the surface 

4. Strong negative PM2.5 anomalies have less 
steep environmental lapse rates and a dry 
lower levels with moisture aloft

5. There is no definitive indicator
• However, SOM can make minute 

distinctions

More moist

More dry



29

NODE VERTICAL PROFILES CONTINUED



FURTHER EXPLORATION
The “Extra Credit”
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MOTIVATIONS FOR ADDING PM2.5 DATA
• Informed by the SOM, high PM2.5 conditions occur in a variety 

of  different meteorological setups
• These setups have common conditions, however…
• We wanted to test if  we could characterize specific properties of  

high PM2.5 episodes we would like to now give LADCO SOM 
node knowledge of  PM concentrations at the surface
• We ran a test SOM adding a PM2.5 variable into the SOM. But 

due to our high dimensionality it needed to be a similar shape of  
our meteorological data
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ADDING PM2.5 DATA INTO SOM INPUT
• Meteorology data plus 

“Krigged” (spatially 
interpolated) PM2.5 data
• Krigged PM2.5 field from  

PM2.5 concentrations 
measured at AQS monitors
• All June days from 2019-2023 

except for 2023-06-01 due to an 
incomplete HRRR run
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SOM WITH MET ONLY             SOM WITH MET+PM2.5

(Pa)(Pa)
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KRIGGED PM2.5 SOM WEIGHTS
Notable features: 
1. “Equal interval” symbology is dominated by 

the 2023 event
2. MN appears to experience less PM2.5 

impacts in the month of  June compared to 
the rest of  the LADCO states

3. Notice the scale!

(µg/m^3)
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KPM VERTICAL PROFILES
Notable features: 

1. High PM2.5 events characterized by low 
level shear environments 

2. Additionally, high PM2.5 events seem less 
dependent on temperature inversions and 
more correlated with stagnant conditions
• Although this could also be due to the 

location of  the point sounding

3. High PM2.5 conditions also appear now to 
be clearly associated with dryer conditions 
in the mid levels 
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LADCO SOM CONCLUSIONS
• In general, weak high pressure systems are associated with stagnation 

conditions and higher PM2.5 concentrations
• Strong low pressure systems are capable of  maintaining long range 

pollutant transport pathways in the upper atmosphere
• High PM2.5 nodes are strongly correlated with upper-level 

convergence which can lead to higher PM2.5 impact at the surface and 
slower jet streak motion which can diagnose less dynamical systems
• Considering solely meteorological variables may not present the full 

picture and significantly elevated PM2.5 impacts have occurred within 
a variety of  meteorological modes
• Improved PM2.5 integration
• Atmospheric chemistry influences
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SOM APPLICATIONS TO FORECASTING
• A potential use of  the LADCO SOM is in air quality forecasting 
• Air quality forecasters can leverage the results from LADCO SOM 

to examine if  PM2.5 impacts are typical or atypical for a June day 
in the LADCO region given the region’s current meteorological 
conditions
• Further refinement to LADCO SOM may enable undiscovered 

insights into harder to detect meteorological relationships with 
trends in air quality
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NEXT STEPS FOR SOM ANALYSIS
• Additional feature analysis and examination may inform an 

optimal blend of  input variables for different SOM configurations
• Considering alternative climatological periods or varying sets of  

training data could glean more specific (or broader if  desired) 
trends given the right input data
• The meteorology + krigged PM2.5 SOM could be improved 

further. With improved knowledge of  PM2.5 conditions, more 
actionable results for determining the relative anomaly of  current 
(or a specific event’s) meteorological conditions can be achieved
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Questions?

Email: victor.geiser@colostate.edu
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Backup Slides!
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Input vector Initial 3x2 SOM
[1, 2, 3] [5, -3, 7] [8 , 8 , 8]
  [8, -4, 2][13, 4, 9]
  [0, 3, 5][5, 6, -5]

• Three main concepts:
1. Best Matching Unit / 

Activation Distance
2. Neighborhood Function / 

Decay
3. Learning Rate / Decay

SOM ALGORITHM

Initial 3x2 SO           SOM weights after 1 iteration
[5, -3, 7] [8 , 8 , 8]      [4.5, -2.5, 6.5] [7.5, 7.5 , 7.5] 
[8, -4, 2][13, 4, 9] ->   [7, -3, 1]         [12, 3, 8]
[0, 3, 5][5, 6, -5] [1, 2, 4]          [4, 5, -4]

Input vector Initial 3x2 SOM
[1, 2, 3] [5, -3, 7] [8 , 8 , 8]
  [8, -4, 2] [13, 4, 9]
  [0, 3, 5] [5, 6, -5]
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LADCO SOM DISTANCE MATRIX
Examines relative node heterogeneity 
(used in LADCO SOM)

Informs boundaries between 
potential node clusters
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SOM LEARNING CURVES
• This is how we can tell our SOM is “learning”!
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SOM LEARNING CURVES CONT. 1 of 2
• Why does our topographic error 

increase in the middle of  our training 
iterations?
• Forest, F., et al (2021)

• “Topographic error shows the trade-
off  between self-organization … and 
the resulting clustering quality.”

• “A practitioner could thus choose to 
use an early sopping strategy … but it 
would harm the quality of  the 
clustering.”

?
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SOM LEARNING CURVES CONT. 2 of 2
• Why does quantization error stop at 

800? That seems abnormally high?

• Correct!

• The answer lies in how the data is 
represented in the SOM

• Our data is vectorized

• 420 latitude x 444 longitude = 
186480 (for one variable) … * 6 = 
1118880 “columns” for one sample

?



FULL PYTHON WORKFLOW
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PRESERVING TOPOLOGY
• More similar “nodes” 

are closer to one 
another within the 
SOM

This is a single SOM “node”
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EXPLANATION OF PARAMETERS
• “SH01” – 0-1km wind shear and direction
• “SH06” – 0-6km wind shear and direction
• “850hPa ω” – Vertical velocity above the PBL*
• “CIN, CAPE” – Convective Inhibition, Convective Available 

Potential Energy
• “#TI” – Number of  temperature inversions (2°C / 100hPa)
• “850-950hPa avg temp” – Average temperature difference between 

the 850 hPa and 950hPa levels.
• “Avg PM2.5 Anomaly” – The same as before



(%)
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500hPa RELATIVE HUMIDITY
Notable features: 

1. No direct and significant statistical relationship 
between avg 500hPa RH and PM Anomaly
• Spearman Correlation = -0.067 (slightly negative) P-

value = 0.81 (>>0.05 – trend is not very significant) 
• Higher RH à Lower PM

2. High PM2.5 can occur in a variety of  different 
mid-level moisture profiles
• Node (2,0) Displays a dry conveyor belt associated 

with elevated PM Anomaly (increase of  5mg/m3). 
Node (2,1) to a lesser extent

• Node (1,3) Low pressure dominated node with more 
N/S transport and lower anomaly

• Nodes (1,4) (2,4) (2,3) Low pressure dominated nodes 
with more W/E transport and higher anomaly



(K)
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SURFACE TEMPERATURE
Notable features: 

1. Two primary surface temperature patterns
a. Warmer southern temperatures extending northward
b. Cooler northern temperatures extending southward
• Distinctions between nodes are primarily on the order 

of  the magnitude of  this extension
• Middle column is an exception!

2. More significant statistical relationship between 
avg surface temperature and PM Anomaly
• Spearman Correlation = 0.44 (moderately positive) P-

value = 0.099 (significant at the 10% range) 

*Lower lake surface temperatures are 
masked out of visualization to make land 
surface temperatures easier to read
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DATA EXTENT
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Adjusted Symbology of  
met + krigged pm2.5 
SOM for visualization 
purposes


