

Trends in PM_{2.5} and Ozone in the LADCO Region: With Estimated 2024 Values

Angie Dickens and Mark Janssen LADCO Data Scientist & Emissions Director

LADCO Business Meeting September 25, 2024

The overall picture: A normal to clean air year

- Emissions trends
- PM_{2.5} annual values & design values
 - Trends & distribution
- Ozone fourth-high values & design values
 - Drivers in 2024
 - Trends and distribution
 - Meteorological adjustment using CART
- Regional haze trends

Annual Emissions | LADCO States | Pollutant: NOX

Annual Emissions | LADCO States | Pollutant: VOC

Annual Emissions | LADCO States | Pollutant: PM25-PRI

Annual Emissions | LADCO States | Pollutant: NH3

Annual Emissions | LADCO States | Pollutant: SO2

9

Estimated 2024 PM_{2.5} Values

- Used draft monitoring concentrations through September 22nd
- Use Annual Mean concentrations for 2022 and 2023
- For 2024 (in progress):
 - Use AQS data when available (3-9 months at this point)
 - If not, use AirNow Tech data when available (for continuous monitors)
 - If neither is available, use historical monthly concentrations
 - Estimate three values: minimum, mean, maximum using 2019-2023 data (5 years)
 - Exclude June 2023 because it was such an outlier
 - Minimum (maximum, mean) uses the minimum (maximum, mean) monthly value from the previous 5 years
 - Gives an idea of the likely range of design values

Estimated 2024 PM_{2.5} Values

Impact of smoke on trends

Mean Annual PM_{2.5} Concentration by Cluster

Determined amount of smoke on a given day

- = $PM_{2.5-daily} (Mean PM_{2.5} + 1 stdev)_{nonsmoke-days-month}$
- When smoke in satellite column (HMS smoke)
- Method adapted from Childs et al. (2022) *ES&T* and Burke et al. (2023) *Nature*

Appears that without smoke impacts, $PM_{2.5}$ trends would be relatively flat

13

Range of Estimated 2022-2024 PM_{2.5} DVs

CBSAs with 2021-23 DVs > 9 $\mu g/m^3$

Davenport/Rock Island has corrected 2021-23 DV < 9 μ g/m³

Cadillac & Ann Arbor MI almost certainly will have 2022-24 DVs < 9 μ g/m³

Several other areas have estimated mean DVs at or below 9 μ g/m³ but maximum DVs > 9 μ g/m³

- Likely will be okay, but maybe not, depending on PM_{2.5} levels the rest of this year
- Grand Rapids, Milwaukee, and South Bend

Other areas will almost certainly have $DVs > 9 \mu g/m^3$

2023 and 2024 Estimated Annual Mean $PM_{2.5}$ DVs - As of September 22, 2024

Estimated 2024 PM_{2.5} Values

Annual: peak values in southern/eastern urban areas

All values are very low

Estimated 2022-2024 PM_{2.5} Design Values

Design values are lower than for 2021-23 Many (~ 25%) are still over the NAAQS

Estimated 2022-2024 PM_{2.5} Design Values

Annual: peak values in urban areas in east:

All values are well below the level of the NAAQS

• Indianapolis, Cincinnati, Detroit, Kalamazoo, & Cleveland

Ozone: Major Drivers

June-August Temperatures:

Average temperatures across almost the whole region

Ozone: Major Drivers

Monitored NO₂ Concentrations:

NO₂ has only decreased very slightly since 2020

 \rightarrow Not helping ozone decrease

4415 West Harrison St., Suite 548 Hillside, IL 60162

Current 2024 Ozone Fourth High Values

Ozone Fourth High Value Trends, LADCO States

Fourth high ozone values were the second-lowest observed in the last few decades

Current 2024 Ozone Fourth High Values

- Fairly low in much of the region
- Very high/high in the classic locations on Lake Michigan
- High in southern areas: Louisville & Cincinnati
- Unusually low in most of Chicago (except northern lakeshore monitors)
- High monitors in Cleveland and Toledo

Current 2022-2024 Ozone Design Values

Ozone Design Value Trends, LADCO States

Overall, similar DVs to 2021-23

Current 2022-2024 Ozone Design Values

- Much higher than 2024 fourth highs because 2023 was so high
- Mostly follow typical spatial patterns

Additional PM_{2.5} and Ozone trends figures by nonattainment area are in the Appendix

Meteorological Adjustment of Ozone via CART

- CART is a statistical tool to classify data
- Used to determine meteorological conditions on high-ozone days
- Examine trends in ozone on meteorologically similar days
 - Allows examination of trends in ozone as a result of non-meteorological factors, such as emissions changes
- Applied CART to data from 2001-2023
- Will develop a report with the complete analysis

CART – Cleveland

2001-2023 Trends by CART Node: Cleveland

Almost all areas: continued reductions in O_3 on O_3 -conducive days

Most high-O₃ nodes show a spike in 2023 Presumably due to smoke enhancement

25

CART – Urban Nonattainment Areas

26

MILWAUKEE

CART – Rural Lake MI Nonattainment Areas

2001-2023 Trends by CART Node: Sheboygan County

Additional plots are available in the appendix

4415 West Harrison St., Suite 548 Hillside, IL 60162

Regional Haze – Through 2023

Conclusions

- Emissions reductions are slowing
 - Impacts of large national rules won't be felt until the end of the decade
- 2024 was a relatively clean year for air quality in the region (so far)
 - Didn't have a lot of smoke transported into the region (although there was some)
 - Average temperatures
 - Stable NO₂ concentrations

Questions?

APPENDIX

Annual PM_{2.5} Trends by CBSA: Northern States + Northern IL

4415 West Harrison St., Suite 548 Hillside, IL 60162 LADCO also has design value-only plots.

Annual PM_{2.5} Trends by CBSA: Southern Areas

33 LADCO

Annual PM_{2.5} Trends by CBSA: Other Areas

Ozone

Allegan Berrien Chicago Cincinnati Cleveland Columbus Detroit Louisville Manitowoc Milwaukee Muskegon Sheboygan

St. Louis

4415 West Harrison St., Suite 548 Hillside, IL 60162

Ozone Trends by Area: WI & IL

Ozone Trends by Area: MI & IN

37

Ozone Trends by Area: OH

4415 West Harrison St., Suite 548 Hillside, IL 60162

LADCO additional plots of ozone fourth highs and design values.

38

Ozone Trends at Peak Monitors: WI & IL

100

Concentration (ppb) 90 4th high
 DV 2024 Data are Preliminary 80 70 00400700 DV and 4th High Trends - Bayside (Milwaukee) 100 Concentration (ppb) 90 2024 Data are Prelimina 4th high 80 — DV 70 DV and 4th High Trends - Chiwaukee (Chicago) 110 Concentration (ppb) 4th high — DV 2024 Data are Prelim 70

DV and 4th High Trends - Harrington Beach (Milwaukee)

LADCO

Ozone Trends at Peak Monitors: MI & IN

2024 Data are Preliminary

 4th high - DV

Ozone Trends at Peak Monitors: OH

4415 West Harrison St., Suite 548 Hillside, IL 60162

CART – Cleveland

Hillside,

High- O_3 nodes (mean > 60 ppb)

CART Trends: Maintenance areas (& Milwaukee downtown)

4415 West Harrison St., Suite 548 Hillside, IL 60162

CART – Application to Similar-Day Analysis Two most important met factors

July 25, 2023 had extraordinarily high ozone but the meteorology was "normal" for that type of day -> Strong support for importance of smoke enhancement of ozone formation

Two higher-O₃ points were June 20 and 21, 2022, 4-5 days after a Tier 1 PM_{2.5} smoke day (from AZ/NM)

CART – Application to Similar-Day Analysis

Two most important met factors

Probably could use this analysis to support exceptional events demonstrations for ozone

- Challenge: meteorological data generally isn't available until spring/summer of the following year
- Planning to look into new ways of doing CART or similar analysis: may have less of a delay